TABLE OF CONTENTS

Chapter 1 Introduction and Overview ... 1

Chapter 2 Planning Biomedical Studies ... 9
 2.1 Study Objectives ... 9
 2.2 The Planning Process ... 11
 2.3 Writing the Protocol ... 12
 2.4 Correspondence Between Objectives, Design, and Analysis 13

Chapter 3 Principles of Statistical Design 17
 3.1 Bias and Variability ... 17
 3.2 Identifying and Quantifying Sources of Bias and Variability 18
 3.3 Methods to Control Bias and Variability 22
 3.4 Defining the Experimental Unit ... 26
 3.5 Randomization ... 27
 3.6 Uniformity Trials ... 30
 3.7 Blocking ... 32
 3.8 Binding ... 34

Chapter 4 Sample Size Estimation .. 37
 4.1 Statistical Context ... 37
 4.2 Sample Sizes for Point Estimation ... 39
 4.3 Sample Sizes for Interval Estimation 40
 4.4 Sample Sizes for Hypothesis Testing 41
 4.5 Pilot Studies ... 45
 4.6 Subsampling Issues ... 48
 4.7 Sensitivity Analyses .. 49

Chapter 5 Common Designs in Biological Experimentation 53
 5.1 The Completely Randomized Design 54
5.1.1 The One-Way Layout .. 55
5.1.2 Factorial Design .. 55
5.1.3 Advantages and Disadvantages of the Completely
Randomized Design .. 58
5.2 Stratified Design / Randomized Block Design 58
5.3 Crossover Study .. 62
5.4 Split Plot Design .. 65
5.4.1 Origin .. 65
5.4.2 Repeated Measures Design 66
5.4.3 Summary .. 67
5.5 Types of Control .. 67
5.5.1 Negative Control .. 68
5.5.1.1 Subject as His/Her Own Control 68
5.5.1.2 Untreated Control .. 69
5.5.1.3 Placebo Control .. 69
5.5.2 Active Control .. 70
5.6 Dose Selection in Dose-Response Studies 72
5.7 Multicenter Studies .. 78
5.8 Summary .. 80

Chapter 6 Sequential Clinical Trials 83
6.1 History .. 83
6.2 Rationale .. 85
6.3 Sequential Designs .. 86
6.4 Group Sequential Designs 93
6.5 Interim Analyses .. 99
6.6 Data Monitoring Boards 99

Chapter 7 High Dimensional Designs and
Process Optimization .. 103
7.1 Fractional Factorial Design 103
7.2 Response Surface Methodology 110
7.3 Process Optimization 114
7.3.1 Sequential Simplex Design 114
7.3.2 The Method of Steepest Ascent 116
7.3.3 Experiments with Mixtures 116

Chapter 8 The Correspondence Between Objectives, Design,
and Analysis — Revisited 119
8.1 Data Analyses vs. Study Objectives and Design 119
8.2 Types of Data .. 120
8.3 Verification of Assumptions 121
8.4 Multiplicity Adjustments ... 123
8.5 Statistical Packages .. 124
8.6 Analysis Strategies ... 126
 8.6.1 Parametric Methods for Continuous Data 127
 8.6.2 Nonparametric Methods for Continuous Data 130
 8.6.3 Methods for Discrete and Categorical Data 133
8.7 Meta Analyses ... 135

Chapter 9 Summary and Concluding Remarks 137
 9.1 The Role of the Statistician 137
 9.2 Summary .. 139
 9.3 Concluding Remarks .. 140

References .. 143

Appendix A. Glossary of Statistical Terms 147

Appendix B. Formulas for Sample Size Estimation 151
 B.1 Sample Size Formulas for Point Estimation 151
 B.2 Sample Size Formulas for Interval Estimation 152
 B.3 Sample Size Formulas for Hypothesis Testing 153

Index ... 157
Without relying on the detailed and complex mathematical explanations found in many other statistical texts, *Principles of Experimental Design for the Life Sciences* teaches how to design, conduct, and interpret top-notch life science studies. Learn about planning biomedical studies, the principles of statistical design, sample size estimation, common designs in biological experiments, sequential clinical trials, high dimensional designs and process optimization, and the correspondence between objectives, design, and analysis.

Each of these important topics is presented in an understandable and non-technical manner, free of statistical jargon and formulas. The book also includes real-life examples from the author's 25-year biostatistical consulting career. With *Principles of Experimental Design for the Life Sciences* you can improve your understanding of statistics, enhance your confidence in your results, and, at long last, shake off those statistical shackles!

Features
- Presents clear and comprehensive explanations of the advantages and disadvantages of common experimental designs
- Fully describes the experimental planning process, including generation of study objectives and writing of the experimental protocol
- Clearly explains the concepts of bias and variability, as well as methods to identify and control their sources
- Presents information on methods of data analysis, highlighting the author's unique "one-to-one-to-one" correspondence approach
- Includes two useful appendices: one on statistical terms and one on formulas for sample size estimation