HKU performs the first-in-man restorative treatment –
the dual-targeted thoracic spinal cord stimulation for heart failure

Press Conference
February 5, 2015
Speakers

Professor Tse Hung-fat
William M W Mong Professor in Cardiology
Chair Professor
Department of Medicine
Li Ka Shing Faculty of Medicine
The University of Hong Kong

Dr Cheung Chi-wai
Clinical Associate Professor
Department of Anaesthesiology
Li Ka Shing Faculty of Medicine
The University of Hong Kong
Progression of Heart Failure

Heart Damage → Heart Dilatation → Chronic Heart Failure

NEJM 2010
Cardiac Transplantation in Hong Kong
- First transplant in 1992
- “100” transplant in 2009
- Average 6-10 cases of heart transplant per year in HK
- <1/1000 chance of heart transplant for heart diseases

LVAD in Hong Kong
- <3 implant
- Cost ~0.8 million per case
- Bridging therapy to transplant
Statistical Data on Heart Failure in Hong Kong

Data from HK Hospital Authority

Admitted to hospital
5%

Death due to heart failure

Data from HK Hospital Authority
Sympathovagal Imbalance in Heart Failure

- Sympathovagal imbalance has been proposed to play an important role in the progression of heart failure

- Neuromodulation of the autonomic nervous system is a potential novel therapeutic approach in heart failure

Mann DL, Heart Failure: A Companion to Braunwald’s Heart Disease
Spinal cord stimulation (SCS) with an implantable device has been used clinically to relieve symptoms in patients with refractory angina.\(^1,2,3\)

- It has been proposed that SCS:
 - ↑ Myocardial blood flow
 - Regulation of intrinsic cardiac nervous system: ↑ vagal tone and ↓ sympathetic output
 - Release of neuropeptides on adrenergic pathway
 - Suppress of nociceptive transmission

\(^1\) Schoebel FC et al. Am Heart J 1997;134:587-602
Neuromodulation

- Technology impacting on the neural interface
- The process of inhibition, stimulation, modification, regulation or therapeutic alteration of activity, electrically or chemically, in the central, peripheral or autonomic nervous systems
Indications

• Chronic Pain

• Indications not related to pain:
 • Profound deafness, tinnitus
 • Epilepsy
 • Incontinence, sexual dysfunction
 • Dystonias, Parkinsonism
 • Gastroparesis, irritable bowel syndrome
Spinal Cord Stimulator Implantation

PERCUTANEOUS LEAD IMPLANTATION
Our recent acute1 and chronic2 studies suggest that upper thoracic SCS improves heart function in large animal model of heart failure.

1 Liu Y, et al. JCE 2012 2 Liao S, Europace 2015
Study Background

SCS HEART Centers

- Queen Mary Hospital, Hong Kong (n=10)
- John Hunter Hospital, Australia (n=3)
- Royal Adelaide Hospital, Australia (n=3)
- Osaka University Hospital, Japan (n=1)
- The University of Tokyo Hospital, Japan (n=1)
Study Design

Screening
n=23

SCS Implant
n=17

Not eligible or refused SCS (n=4)
Not met criteria (n=2)

2 subjects* with incomplete efficacy endpoint assessments at Month 6

15 (88%) Subjects Completed Month 6 follow-up

Follow-up Continued through 24 Months

- NYHA Class III or Ambulatory Class IV
- LVEF between 20% and 35%

*1 subject’s SCS was programmed off at 3 months due to VT/VF and progressive HF; this subject did not complete exercise test and echocardiography
*1 subject did not complete the cardiopulmonary exercise test due to knee problem (gout)
Study Methods

Implant

- Percutaneous epidural puncture under local anesthesia
- Dual thoracic SCS leads targeted along the midline and left of midline at T1-T3 levels

Setting

- SCS for 24 hours/day
- Stimulation frequency: 50 Hz
- Stimulation pulse width: 200 μs

Patient: Mr Lee
Results – Implant and Safety Endpoints

• **At Implant**
 - In one patient, the second SCS lead could not be implanted
 - No acute complications were observed

• **At 6 months FU**
 - No deaths
 - Hospitalization for HF: 2 subjects (12%)
 - No device-device interactions were noted
 - One device battery failure needed replacement
 - VT/VF requiring ICD intervention: 2 subjects (12%)
 - 3 subjects reported neck or back discomfort requiring SCS device reprogramming (n=3) or lead repositioning (n=1)

• **At mean of 16 months FU**
 - Two deaths due to HF (12%), at 7.5 and 14.5 months
 - No device-device interactions were noted
 - Hospitalization for HF: 2 subjects (12%)
 - VT/VF requiring ICD intervention: 4 subjects (24%)- all had VT/VF before SCS
Among those 15 SCS-treated group subjects completed the efficacy endpoint assessments, the composite score improved by 4.2 ± 1.3.

11 subjects (73%) showed improvement in $\geq 4/6$ efficacy parameters.
Results –
Heart Failure Functional Class

SCS Treated Group (n=17)

P=0.002

Non-treated Group (n=4)

Class IV
Class III
Class II
Class I

Number of Patients

Baseline
6 months
Baseline
6 months

17/17
10/17
3/17
4/4
3/4
1/4

Results – Exercise Capacity

SCS Treated Group (n=15)

- Baseline: 14.6±3.3
- 6 Months: 16.5±3.8

Non-treated Group (n=4)

- Baseline: 16.4±2.6
- 6 Months: 14.3±1.5

P=0.013

Results –

Left Ventricular Ejection Fraction

Echocardiographic Assessment of Heart Function

Baseline
LVEF 28%
LVEDV 189 ml
LVESV 136 ml

6 months
LVEF 32%
LVEDV 169 ml
LVESV 119 ml
Conclusions

• This first-in-man trial shows that dual-targeted high thoracic SCS:
 • was safe
 • improved symptoms, functional status and LV function and remodeling in patients with severe, symptomatic systolic HF

• These initial promising results should be confirmed with future randomized controlled trials in large patient cohorts
Q & A Session
Case Sharing