HKU AIDS Research Institute Discovers a New Immune Pathway Critical to Treatment of Gut Inflammation in HIV-1 Infection

Press Conference
August 24, 2017
Speakers

Professor Chen Zhiwei
Director of the AIDS Institute
Professor of Department of Microbiology
Li Ka Shing Faculty of Medicine, HKU

Dr Allen Cheung Ka Loon
Postdoctoral Fellow
AIDS Institute, Department of Microbiology
Li Ka Shing Faculty of Medicine, HKU
HIV / AIDS

- Human Immunodeficiency virus type 1 (HIV-1) causes AIDS
- Infects primarily CD4 T lymphocytes, integrates into the host genome and establishes chronic infection
- Diminishing CD4 T cell count over years
- Immune dysfunction
- Prone to opportunistic infections and other diseases such as gut enteropathy
- Highly active antiretroviral therapy (HAART) can prolong a patient’s life
- No vaccine to date
- New understanding and therapy is required
Early HIV-1 infection

- Gut inflammation
- CD4 depletion
- Inflammatory cytokines
- Viral replication
- Viral setpoint

Difficulty to study

- Rare samples
- Window period <30 days
- Non-human models
Identification of Δ42PD1

- Isoform of PD-1 (Molecular Therapy 2013)
- Expressed on a subset of T cells = γδ-T
- γδ-T comprise of 1-10% of peripheral blood lymphocytes
- Important in maintenance and activating immune response
- Readily migratory
High Δ42PD1+γδ-T cells in acute HIV-1 patients

Plasma cytokines

TNF-α, IL-6, IL-1β, IFN-α = pro-inflammatory cytokines
Δ42PD1+γδ-T cells are gut-homing

Acute HIV-1 patients

Humanized mice model – transfer of labelled cells

Detection of HIV-induced labelled γδ-T cells in small intestines
Δ42PD1+γδ-T cells causes gut inflammation

Small intestines after transfer

Inflammation
- Villous blunting
- Vacuolization
- Epithelial layer detachment
- Mucosal ulceration
- Disintegration of lamina propria
Δ42PD1-TLR4 interaction

Protein-protein binding

- Protein-protein binding curve showing $K_D = 6.82 \mu M$
 - Different concentrations of TLR4/MD2 (μM): 44.1, 14.7, 4.9, 1.64, 0.49

Cell experiments

- Diagram of TLR4 and Δ42PD1 with IL-6 production

Microscopy

- Microscopy image of Δ42PD1 and TLR4

Bar graph

- Comparison of IL-6 production with different treatments:
 - IsoAb, Anti-Δ42PD1, Anti-TLR4, DMSO, CLI-095, Y6-T only, Untreated, sΔ42PD1, LPS

- Co-DC and DC conditions
Blocking Δ42PD1-TLR4 pathway prevents gut inflammation

CLI-095 = TLR4 inhibitor
HIV-1 infection

“Cytokine storm”

Inflammation
- Epithelial damage
- Villi shortening

Pro-inflammatory Cytokines

TLR4
Δ42PD1

Vδ2
CD103
CCR9
Δ42PD1

Small intestine villi

Summary
Conclusions

• Discovered a new Δ42PD1-TLR4 pathway important to understand early HIV-1 infection
• Generated an antibody to block it and prevent gut inflammation
• May be applicable to other mucosal inflammatory diseases
• Develop the antibody for clinical use
Acknowledgements

Li Ka Shing Faculty of Medicine, HKU

AIDS Institute
Dr Raven Kok
Miss Huang Yiru
Miss Mo Yufei
Miss Kwok Hau-yee
Dr Wu Xilin
Dr Lee Boon-kiat
Mr Lam Ka-shing
Miss Li Jingjing

Department of Microbiology
Professor Yuen Kwok-yung

Department of Pharmacology & Pharmacy
Professor Xu Aimin

City University of Hong Kong
Miss Kong Hoi-kuan
Dr Terrence Lau

Center for Disease Control and Prevention, Yunnan
Dr Chen Min

HKU-AIDS Institute Lab, Third People’s Hospital, Shenzhen
Dr Peng Qiaoli
Dr Wang Hui
Dr Cheng Lin
Professor Zhou Boping

You-An Hospital/Capital Medical University, Beijing
Dr Lu Xiaofan
Dr Wu Hao

The First Affiliated Hospital, Shenyang
Dr An Minghui
Professor Shang Hong

Research Funding
The Research Grants Council (HKU5/CRF/13G, 17103514, 17122915, A-HKU709/14)
Health & Medical Research Fund (15140372, 14130582)
HKU LKS Faculty of Medicine Matching Fund
San-Ming Project of Medicine in Shenzhen
National Science and Technology Major Project
Beijing Key Laboratory of HIV/AIDS Research
Beijing Municipal of Science and Technology Major Project
Q & A Session