

Diabetic retinopathy genetic variants identified in genome-wide association studies and the risk of microvascular complications in Chinese diabetic patients

Chloe YY Cheung¹, Elaine YL Hui¹, Kelvin HM Kwok¹, Carol HY Fong¹, Rachel LC Wong¹, Chi Ho Lee¹, Michele Yuen¹, Yu Cho Woo¹, Chun Yip Yeung¹, Wing Sun Chow¹, Pak C Sham^{2,4}, and Karen SL Lam^{1,3} ¹Department of Medicine and ²Department of Psychiatry, ³Research Centre of Heart, Brain, Hormone and Healthy Aging, the ⁴Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.

Methods & Materials

Study design

Three cross-sectional case-control studies on (1) sight-threatening DR (STDR); (2) proliferative DR (PDR); and (3) DN, were performed based on subjects from the Hong Kong West Diabetes Registry.

Subjects

- STDR cases (n=576): Based on the United Kingdom National Screening Committee classification protocol for grading of retinopathy, patients having PDR (R3), or severe pre-PDR (R2), or having clinically significant macular oedema (CSMO), were considered as STDR cases.
- ✓ PDR cases (n=309): Patients graded retinopathy level R3 were considered as PDR cases.

of endstage renal disease

Environment

of blindness in adults

- Diabetic retinopathy (DR) and diabetic nephropathy (DN) are multifactoral diseases caused by complex interactions between multiple genetic and environmental factors.
- Understanding the genetic basis of these diseases may serve to identify the possible common underlying pathophysiology mechanisms.
- This genetic information may also contribute to the risk profiling of chronic microangiopathic complications in diabetic patients, which may be useful in facilitating their early diagnosis.
- Findings from genome-wide association studies (GWAS) provide novel insights into the pathogenesis of various diseases.
- Recent GWAS identified novel susceptibility genetic variants for DR¹⁻⁴ which deserve further investigation.

Objectives

• This study aimed (i) to validate the associations of these genetic variants with DR and (ii) to evaluate whether these DR-associated SNPs would also be associated with an increased risk of DN, in Chinese diabetic patients.

- ✓ DN cases (n=984): DN cases included patients with the presence of either microalbuminuria or macroalbuminuria, as indicated by the patient's urinary albumin-to-creatinine ratio (ACR) in two random urine samples, collected within 6 months, according to the American Diabetes Association criteria.
- Non-DR & non-DN controls (n=1055): Subjects with normoalbuminuria (NA) and no retinopathy (R0) were considered as controls.

Single nucleotide polymorphisms (SNPs) selection

- ✓ 36 top associated SNPs (P<5x10⁻⁴, r²<0.9) previously identified in DR GWAS were selected for investigation.</p>
- ✓ 4 monomorphic SNPs and 5 SNPs which failed to pass quality check (deviation from Hardy-Weinberg Equilibrium or genotyping call rate < 90%) were excluded from analyses.

Statistical analysis

✓ Binary logistic regression analyses, with adjustment for age, duration of diabetes, gender, systolic blood pressure, diastolic blood pressure, and HbA1c, were used to evaluate the independent associations of SNPs with DR and DN.

				R	esults						
Table 1. Association analyses of GWAS identified DR-associated SNPs with STDR, PDR and DN.											
				STDR		PDR		DN			
				576 cases vs 1055 controls		309 cases vs 1055 controls		984 cases vs 1055 controls			
CHR	SNP	Nearest Gene(s)	A1	OR(95%CI)	Padjusted*	OR(95%CI)	Padjusted*	OR(95%CI)	Padjusted*		

1	rs3007729	IGSF21-KLHDC7A	Т	0.93(0.78-1.12)	0.463	0.94(0.75-1.18)	0.599	1.01(0.87-1.17)	0.948
1	rs2811893	MYSM1	С	1.05(0.88-1.26)	0.563	1.03(0.82-1.28)	0.813	1.06(0.92-1.23)	0.397
1	rs1342038	TNFSF4-RPL26P11	С	0.91(0.77-1.08)	0.300	0.88(0.71-1.08)	0.225	0.92(0.80-1.06)	0.246
1	rs6662352	KIAA1804-KCNK1	Т	1.01(0.84-1.21)	0.915	0.91(0.72-1.14)	0.406	1.09(0.94-1.26)	0.246
1	rs10927101	AKT3-ZNF238	С	1.09(0.91-1.31)	0.355	1.13(0.90-1.42)	0.301	0.99(0.85-1.15)	0.873
1	rs476141	AKT3 and ZNF238	A	0.90(0.73-1.11)	0.312	0.91(0.70-1.19)	0.496	0.96(0.85-1.14)	0.624
2	rs10199521	MYT1L-TSSC1	Α	1.13(0.96-1.35)	0.150	1.34(1.09-1.67)	6.8x10 ⁻³	1.07(0.92-1.23)	0.389
2	rs1399634	LRP2-BBS5	Т	1.00(0.84-1.19)	0.982	1.04(0.84-1.29)	0.733	0.99(0.86-1.15)	0.930
3	rs13064954	LEKR1-CCNL1	Α	1.32(0.97-1.78)	0.077	1.20(0.81-1.76)	0.364	1.46(1.14-1.86)	2.5x10 ⁻³
3	rs9866141	KRT18P34-VEPH1	т	1.50(1.10-2.05)	0.010	1.37(0.93-2.02)	0.116	1.57(1.22-2.02)	5.4x10 ⁻⁴
4	rs4470583	RPS14P7-FSTL5	A	0.85(0.61-1.18)	0.329	0.89(0.59-1.33)	0.553	0.92(0.70-1.19)	0.510
5	rs17376456	C5orf36	G	0.81(0.53-1.24)	0.326	0.87(0.51-1.48)	0.611	1.06(0.76-1.48)	0.748
5	rs2300782	CAMK4	Т	0.96(0.81-1.12)	0.552	0.91(0.74-1.12)	0.378	0.92(0.80-1.06)	0.236
6	rs17083119	C6orf170	G	0.96(0.73-1.26)	0.76	0.96(0.68-1.35)	0.804	1.08(0.87-1.34)	0.471
6	rs7772697	UST-TAB2	С	1.04(0.83-1.30)	0.726	0.97(0.74-1.29)	0.856	1.04(0.87-1.25)	0.642
10	rs1571942	PLXDC2	С	0.89(0.68-1.15)	0.368	0.76(0.54-1.06)	0.106	0.92(0.74-1.14)	0.456
10	rs12219125	PLXDC2-NEBL	Т	0.91(0.69-1.18)	0.470	0.78(0.56-1.11)	0.165	0.96(0.77-1.20)	0.714
10	rs4838605	ARHGAP22	С	1.09(0.83-1.44)	0.530	1.15(0.82-1.62)	0.434	1.05(0.83-1.32)	0.688
10	rs4462262	ZWINT-MRPS35P3	Т	1.23(0.86-1.75)	0.255	1.04(0.65-1.67)	0.869	1.11(0.82-1.51)	0.485
11	rs899036	API5	С	1.17(0.87-1.57)	0.290	1.45(1.03-2.06)	0.035	1.06(0.83-1.35)	0.658
11	rs10501943	CNTN5	С	1.43(0.88-2.33)	0.145	1.67(0.94-2.96)	0.082	1.19(0.79-1.79)	0.403
13	rs9565164	TBC1D4-COMMD6-UCHL3	С	0.87(0.73-1.04)	0.135	0.82(0.65-1.03)	0.081	0.93(0.80-1.08)	0.317
13	rs16953072	HS6ST3	Т	1.03(0.70-1.53)	0.868	1.19(0.75-1.91)	0.463	1.18(0.86-1.61)	0.310
15	rs10519765	FMN1	A	0.83(0.63-1.09)	0.170	0.83(0.59-1.16)	0.266	1.03(0.82-1.29)	0.794
16	rs4787008	RBFOX1	A	0.40(0.07-2.27)	0.299	0.78(0.13-4.76)	0.788	0.29(0.06-1.30)	0.106
19	rs2115386	INSR	G	1.31(1.11-1.55)	1.7x10 ⁻³	1.47(1.19-1.83)	4.2x10 ⁻⁴	1.07(0.93-1.22)	0.367
19	rs10403021	VSTM2B-POP4	Т	0.978(0.82-1.17)	0.805	0.98(0.78-1.23)	0.847	0.95(0.82-1.11)	0.500

CHR: Chromosome; A1: Minor allele. *Adjusted for age, duration of diabetes, gender, systolic blood pressure, diastolic blood pressure, and HbA1c.

- rs2115386 of INSR showed significant associations with STDR (P_{adjusted} = 1.7x10⁻³; OR[95%CI]: 1.31[1.11-1.55]) and PDR (P_{adjusted} = 4.2x10⁻⁴; OR[95%CI]: 1.47[1.19-1.83]).
- A significant association of an intergenic SNP located between MYT1L and TSSC1 (rs10199521) with PDR (P_{adjusted} = 6.8x10-3; OR[95%CI]: 1.34[1.09-1.67]) was observed.
- An intergenic SNP, rs9866141, located between *KRT18P34* and *VEPH1* was significantly associated with both STDR (P_{adjusted} = 0.010; OR[95%CI]: 1.50[1.10-2.05]) and DN (P_{adjusted} = 5.4x10⁻⁴; OR[95%CI]: 1.57[1.22-2.02]). Another SNP (rs13064954) in strong linkage disequilibrium (r² = 0.875) with rs9866141 also showed a significant association with DN (P_{adjusted} = 2.5x10⁻³; OR[95%CI]: 1.46[1.14-1.86]).

Conclusions

- We have successfully replicated the significant associations of several SNPs identified in previous GWAS with severe retinopathy (STDR and/or PDR) in Chinese
 diabetic patients.
- We have also demonstrated the significant association of a DR-associated SNP KRT18P34-VEPH1 rs9866141 with DN, providing supporting evidence for shared common pathogenetic pathways between DR and DN.
- Whether these SNPs can be used for early identification of subjects at high risk of developing microangiopathic diabetic complications warrants further evaluation in
 prospective studies.

Key references

- Fu YP *et al.* (2010) J Ophthalmol. pii: 861291.
 Huang YC *et al.* (2011) Ophthalmology.118(4):642-8.
 Grassi MA *et al.* (2011) Hum Mol Genet. 15;20(12):2472-81.
- 4. Sheu WH *et al.* (2013) Hum Mol Genet. 1;22(15):3165-73.

Acknowledgements

 This study was supported by the Seed Funding Programme for Basic Research grant awarded to EYL Hui.