Whole Transcriptome Analysis Reveals Gene Expression Differences Between Sexes, Possible Sex Specific Regulation and Contribution to Differential Disease Prevalence Between Sexes

Shen, J.J.¹, Wang, T.Y.², Yang, W.L.²
¹Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong

Background and aims
Although sex is often not taken into account in the genetic studies of human diseases, sex is known to play a role in affecting disease risk, prevalence, severity and subtype. An intermediate phenotype that may help us elucidate gender based differences is gene expression, and we used whole transcriptome data to comprehensively investigate gender based gene expression differences.

Methods
Using RNA seq gene expression data from a lymphoblastoid cell line, we tested for gene expression differences between sexes on 216 males and 246 females. As one mechanism of differentially expressed genes is X inactivation, we investigated whether the differentially expressed genes on the X chromosome tend to be genes that have escaped X inactivation. As another possible mechanism of differential gene expression is differential regulation between sexes, we investigated whether differentially expressed genes (DEGs) are also sex specific expression quantitative trait loci (sex specific eQTLs).

Lastly, we performed pathway analysis on DEGs to test for enrichment of these DEGs in known disease gene sets.

Results and Conclusion
• One thousand sixty six differentially expressed genes between sexes were found throughout both autosomes and sex chromosomes (pvalue adjusted <0.05).
• In general, differentially expressed genes on the X chromosome tended to be genes that have escaped X inactivation or located near genes that have escaped X inactivation.
• Some genes appeared to be regulated in a sex specific manner as they presented as sex specific eQTLs.
• Pathway analysis revealed that diseases that were previously known to have different disease prevalence between sexes also showed signs of having enrichment of genes that were differentially expressed between sexes. These pathways and diseases include: Systemic lupus erythematosus (SLE), serotonergic receptor, prostate cancer, breast cancer.

Table 1: Top 5 sex specific expression quantitative trait (eQTLs) from Dimas et al. matched to differentially expressed genes by sex (DEG) in current dataset.

<table>
<thead>
<tr>
<th>rs_ID</th>
<th>-log10(pvalue) for eQTL</th>
<th>% FDR</th>
<th>Population source</th>
<th>ENSEMBL</th>
<th>SYMBOL</th>
<th>MALE expression (RPKM)</th>
<th>FEMALE expression (RPKM)</th>
<th>Log2 fold difference in gene expression</th>
<th>Multiple test corrected Pvalue for DEG</th>
<th>Chr</th>
<th>Coord</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2872507</td>
<td>5.963</td>
<td>17</td>
<td>CEU_F</td>
<td>ENSG00000186075</td>
<td>ZPBP2</td>
<td>63.778</td>
<td>43.61</td>
<td>-0.5484</td>
<td>2.15E-11</td>
<td>17</td>
<td>38024469</td>
</tr>
<tr>
<td>rs7201780</td>
<td>9.6329</td>
<td>14</td>
<td>CHB_F</td>
<td>ENSG00000102882</td>
<td>MAPK3</td>
<td>1424.352</td>
<td>1587.13</td>
<td>0.15615</td>
<td>0.000293</td>
<td>16</td>
<td>30134827</td>
</tr>
<tr>
<td>rs11673399</td>
<td>7.5078</td>
<td>13</td>
<td>JPT_M</td>
<td>ENSG00000104946</td>
<td>TBC1D17</td>
<td>904.139</td>
<td>1007.419</td>
<td>0.156047</td>
<td>0.00414</td>
<td>19</td>
<td>50380682</td>
</tr>
<tr>
<td>rs1683570</td>
<td>6.164</td>
<td>13</td>
<td>JPT_M</td>
<td>ENSG00000175221</td>
<td>MED16</td>
<td>1619.75</td>
<td>1874.02</td>
<td>0.210365</td>
<td>0.006485</td>
<td>19</td>
<td>893218</td>
</tr>
</tbody>
</table>

References: