Evaluation of Genetic Modified Salmonella Typhimurium as a Targeted Therapy for Neuroblastoma: Comparison of Response of Orthotopic Mouse Models with Different Immunological Background ZL Guo¹, B Yu², JD Huang², GCF Chan¹

Departments of ¹Peadiatrics & Adolescent Medicine and ²Biochemistry, Li Ka Shing Faculty of Medicine, the University of Hong Kong

Backgrounds

> Neuroblastoma is an aggressive paediatric tumor with poor prognosis. Neuroblastoma cancer stem cells thrive in hypoxic microenvironment of the tumor core and they are resistant to conventional treatment.

➢ Genetic engineered anaerobic Salmonella YB1(Sal-YB1) only proliferates under hypoxic environment for it can only synthesize diaminopimelic acid (DAP), an essential component of the cell membrane, under anaerobic condition.

> We investigated the therapeutic effectiveness and bio-safety of Sal-YB1 to both immunodeficient mice and environment.

Materials and Methods

The adrenal orthotopic xenograft was induced by human neuroblastoma (SK-N-LP-Leu) cell line.

Nude mice (deficient in T cells) and NOD-SCID mice (deficient in T, B & NK cells) were used in orthotopic mouse model.

In vivo imagining and Salmonella colony forming units were used to investigate the therapeutic effectiveness and biosafety.

 \blacktriangleright Tumor tissues were assessed by western blot, Elisa assay and histological staining.

Results

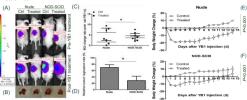
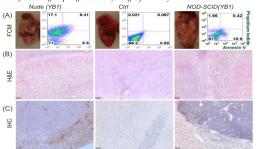
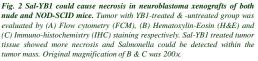
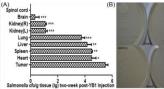





Fig. 1 Sal-YB1 could suppress neuroblastoma growth in both nude and NOD-SCID mice. Tumor growth with/with/out Sal-YB1 treatment was assessed by (A) in vivo imaging system; and (B) tumor size measurement. (C) ROI change rate was significantly different between nude and NOD-SCID mice (P < 0.05). (D) Tumor regression rate was 70% in nude mice and 30% in NOD-SCID mouse (P < 0.05). (E,F) In both nude and NOD-SCID mice, the mice of treated group regained body weight from Day 3.

end onlig ussue (ig) the neer post to

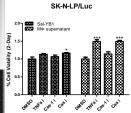


Fig. 6 TNFa & pan-Casp. inhibitors could reverse the anti-neuroblastoma effect by macrophage. Pan-Casp. & anti-TNFa significantly increased the viability of neuroblstoma in macrophage supernatant treated group (P < 0.001).

Conclusions

Our approach provides a new paradigm in targeting cancer cells residing within the hypoxia microenvironment.

down-regulate the

Fig. 3 Sal-YB1 could be detected in normal

solid tissue and stool.

Salmonella CFU test

on (A) tumor & solid

tissues, (B) stool,. Stool

negative mouse could

detect Salmonella in

blood, bile and brain.

184

Fig. 7 Sal-YB1 could up-regulate TLR4

expression of IRAK and IkBa in tumor

tissues. (A) TLR4 Flow Cytometry. (B)

IRAK (P < 0.05) and IkBa (P < 0.001)

Western blotting showed significant

and

decrease in YB1-treated group.

> Even in mice with severe immunodeficient background such as nude or NOD-SCID, our Sal-YB1 could induce tumor necrosis without causing severe infection.

The macrophage may play a critical role in Sal-YB1 directed therapy.

expression

Acknowledgements

This project was supported by CRCG Grant & Edward Sai-Kim Hotung Education and Research Fund.

Fig. 4 Potential signaling pathway in Salmonella treated

TINES MA secration

Fig. 4 Potential signaling pathway in Salmonella treated neuroblastoma. Abbreviation: TLR4, Toll-like receptor 4; IRAK, Interleukin 1 receptor-associated kinase; TAK1, TGF-β-activated kinase 1; IKK, IkB kinase; NF-kB, Nuclear factor kappa B; TNFAIP6, tumor necrosis factor, alpha-induced protein 6; TSG6, TNF-stimulated gene 6 protein; Casp., Caspase.

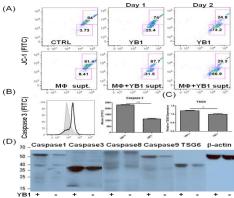


Fig. 5 Sal-YB1 could cascade the Caspases apoptosis signalling pathway. (A) JC-1 could be identified in neuroblastoma after either Sal-YB1 direct treatment or coculture with Sal-YB1 pre-treated macrophage supernatant. (B, C) YB1-treated mouse tumor tissue showed high expression of Caspase3 and TSG6 through Flow cytometry and Western blotting. (D) Caspase1, 3, 8, 9 and TSG6 could be increased in Sal-YB1 treated tumor tissues by Western blot.

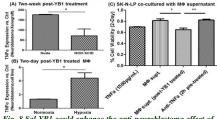


Fig. 8 Sal-YB1 could enhance the anti-neuroblastoma effect of macrophage via TNFa. Elisa assay quantified Sal-YB1 targeting effect on both (A) mouse tumor tissue and (B) human macrophage. (C) The viability of neuroblastoma was decreased when co-cultured with 50% supernatant of the YB1 pre-treated macrophages (P < 0.05) but it could be rescued by TNFa inhibitor(P < 0.01).