Agilent Fragment Analyzer Automated CE System

Overview of Fragment Analyzer Automated CE System

- Maximum sample capacity: 191 samples and 1 ladder
- Detection range Sizing range: 25 – 6000 bp; 50 – 5000 pg/µl (DNF474 kit)
 75 – 20000 bp; 0.5 ng/µL – 50 ng/µL (DNF930 kit)
- Time for run: ~1 hour 20 mins for 12 samples in parallel (DNF474 kit)
 ~1 hour for 12 samples in parallel (DNF930 kit)

Reagents Preparation ---------------------------------- 3
Instrument Preparation ---------------------------------- 3
Software Settings -------------------------------------- 5
Reagent Clearance and Instrument Shutdown --------------- 6
Data Analysis -- 7
Appendix -- 8
Reagents Preparation

Materials needed:

- High Sensitivity NGS Fragment Analysis Kit (DNF474) / dsDNA Reagent Kit (DNF930)
 (Appendix: “Preparation guide for reagents”)
- semi-skirted 96-well PCR plates (VWR #83007-374, #89049-178; Eppendorf #951020303; MidSci Pryme #AVRT1; BioRad #HSS-9601; Greiner Bio-One #652280; 4titude Framestar #4ti-0900-0950,-0970/C; Scientific Specialty #3450-00; Neptune #3742.X)

Procedures:

1. Warm up all reagent to room temperature before use.

2. Equation to room temperature before use.
 (Appendix: “Preparation guide for 1x IB and 1x CC loading”)
3. Prepare the Sample plate and Rinse (DNF474)/ Marker (DNF930) plate according to manufacturer’s quick guides (Appendix).
 - DNA Ladders should be prepared for at least one well per run.
 - Fill all empty wells in the rows of run with Blank Solutions (DNF474)/ 1X TE (DNF930).
 - Check the plate with administrator before loading samples.
Instrument Preparation

Materials needed:

- **Gel/Dye mix** (Appendix: “Solution levels”).
- **Sample plate(s)** (Appendix: “Solution levels”).
- **Marker (DNF930) / Rinse (DNF 474) plate**
- **1x Inlet Buffer Solution** (1XIB prepared by CPOS staffs; to be loaded by user)
- **1x Capillary Conditioning Solution** (1XCC prepared by CPOS staffs; to be loaded by user)

Procedure:

1. Sign on the Log Book before start.
2. Turn on the Fragment Analyzer’s Power Switch and computer.
3. Open Fragment Analyzer Instrument control Software.
 - **User ID:** User
 - **Password:** 1234
 - Acknowledge the maintenance reminder. Maintenance is performed by Core Facility’s Staff.
4. Check the Waste Bottle and the Waste plate at the Waste Tray (W) and empty if needed.
5. Remove any solution from Buffer Tray (B).
6. Load 1 mL **1x Inlet Buffer Solution** per well.
7. Load **1x Capillary Conditioning Solution**.
 - (Appendix: “Preparation guide for 1x IB and 1x CC loading”)
8. Take out the Gel fluid line 1 or 2 from the storage MilliQ tube
9. **Prime** with the tube with air.
 - (“Utilities” -> “Prime” -> check “Gel 1” or “Gel 2” -> “OK”).
10. Clean the outside surface of the tube with Kimwipe.
11. Put the Gel/Dye mix solution to the Gel line.
12. Update the solution levels to the software
 - (“Utilities” -> “Solution levels”).
 - (Appendix: “Solution levels”).
13. Load **Marker (DNF930) / Rinse (DNF 474) plate**.
14. Load **Sample plate(s)** into put into Sample Tray I (and II).
 - **REMOVE** any PLATE SEAL before loading the plate into tray.
 - !!!The seal would DAMAGE THE CAPILLARIES!!!
 - Load all plate into tray with A1 IN INNER LEFT CORNER.
Software Settings

1. In Operation tab, the Tray (1 or 2) that loaded with sample plates.
2. Select the sample row that loaded with sample. Sample name can be input in “Sample ID” column or import from .csv or .txt file. Enter Tray name with prefix of “Supervisor Name_User Name” and followed by the experiment name.
3. For analyzing single row of samples, click “Add to queue” under “Run Selected Group”. For analyzing more than 1 row of samples, click “Add to queue” under “Run Entire Tray”. Remove extra queue with “X” next to “Method summary”.
4. In Separation Setup window, Select or input:
 - Method: Name of Analysis Kit Used
 - DNF-474-33 – HS NGS Fragment 1-6000bp methods/
 - DNF-930-33 – DNA 75-20000bp methods
 - In “Edit”, select the row of marker loaded or Rinse buffer loaded
 - Gel: Position of the gel loaded (Gel 1 or Gel 2)
 - Tray Name: Same as name in Step 2.
 - Folder Prefix: Enter in form of “Supervisor Name_User Name”
 - Any Notes: Enter if necessary
 - OK: to add the method to queue.
5. Select other row or plates in the Tray window and repeat steps 3
6. Click “Add to queue” under “Capillary Array – Conditioning” and select “Default conditioning” to for remove gel in the capillaries after your experiment.
7. Verify all method in queue and trays (Buffer, Rinse, Sample I or II, Gel I or II, Conditioning Solution) are loaded with appropriate container/plate with sufficient reagents.
8. Click start to initiate the run.
9. Separation status can be observed in “Run Status” Tap. Queue of Separation can be modified or added in the Operation tap. Separation method should be always followed by “Default conditioning”.

DO NOT Open Top Compartment or Drawer B and W. The high voltage would be stopped when any of these drawers is opened.
Data Analysis

You can install PROSize 3.0 on your own computer to analyze the data.

1. Open your run by clicking “File” – “Open File”. Select the correct file and click “Open”. The data is saved in “C:\AATI\Data\” by default according to date.

2. Select “Analysis” – “Show size calibration”. Adjust the peak Width and Height so that all the points fit the red line. Right click on the peak to add or remove single peak. If the ladder is not ok, you can import ladder from a previous successful run.
3. Change the dilution factor if your dilution is not 12 (2 μl sample + 22 μl Diluent). It can be changed by clicking on the icon on the upper right corner of a peak table. Select “Quantification”, change the dilution factor and press “Apply to selected” or “Apply to all”.

4. Select “Marker Analysis”, change the Marker Information and press “Apply to selected” or “Apply to all”. If the software hasn't placed the lower (LM) and upper marker(UM) correctly for a certain sample, right-click on the correct peak and choose “Set as lower marker” or “Set as upper marker”.

6. Data can be exported in .csv and .pdf format. The data is given in three different concentrations: TIC = total integrated concentration in ng/µL, TIM = total integrated molarity in nmole/L and total concentration in ng/µL. Be aware that based on your application, you may want to use for example TIC rather than the total concentration.

7. Exit the program. Your changes are saved automatically. In case you want to return to the original raw data without any changes made by you, go to the corresponding folder to delete .ANAI and .PKS files.
Appendix

1. Gel/Dye mix

- Prepare the Gel/Dye mix by adding Intercalating Dye to Separation Gel (ratio of 1:10000) in a 50 mL tube according to the table below. Mark the date on the tube. Mix by inverting the tube. **Do not vortex.**

<table>
<thead>
<tr>
<th>Number of run (row)</th>
<th>Volume of Separation Gel</th>
<th>Volume of Intercalating Dye</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 ml</td>
<td>1.0 µl</td>
</tr>
<tr>
<td>2</td>
<td>14 ml</td>
<td>1.4 µl</td>
</tr>
<tr>
<td>3</td>
<td>18 ml</td>
<td>1.8 µl</td>
</tr>
<tr>
<td>4</td>
<td>22 ml</td>
<td>2.2 µl</td>
</tr>
<tr>
<td>5</td>
<td>26 ml</td>
<td>2.6 µl</td>
</tr>
<tr>
<td>6</td>
<td>30 ml</td>
<td>3.0 µl</td>
</tr>
<tr>
<td>7</td>
<td>34 ml</td>
<td>3.4 µl</td>
</tr>
<tr>
<td>8</td>
<td>38 ml</td>
<td>3.8 µl</td>
</tr>
</tbody>
</table>

NOTE: 1) This volume include 6 ml for priming. The remaining gel after run can used for up to 2 weeks after preparation

- Remove the tube of MilliQ in Gel fluid line (1 or 2), clean the fluid line with Kimwipe only. Prime (Main Menu>Utilities>Prime Gel 1 or 2) twice with air to remove remaining fluid in the line. Inserting Gel fluid line into the Gel/Dye mix. Turn the tube instead of cap to close the tube. Ensure the fluid line is positioned at the bottom of the conical tube and stand properly in the slot.
- Update the solution levels in the Fragment Analyzer instrument control software. Main Menu>Utilities>Solution Levels.

2. 1x Capillary Conditioning Solution (Prepared by Core Facility)

- Prepare the 1x Capillary Conditioning Solution by diluting 5x Capillary Conditioning Solution with MilliQ in a 50 mL tube according to volume in the table below. Mark the date on the tube. Mix by inverting the tube.

<table>
<thead>
<tr>
<th>Number of run (row)</th>
<th>Volume of 1x Capillary Conditioning Solution</th>
<th>Volume of 5x Capillary Conditioning Solution needed</th>
<th>MilliQ needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14 ml</td>
<td>2.8 ml</td>
<td>11.2 ml</td>
</tr>
<tr>
<td>2</td>
<td>18 ml</td>
<td>3.6 ml</td>
<td>14.4 ml</td>
</tr>
<tr>
<td>3</td>
<td>22 ml</td>
<td>4.4 ml</td>
<td>17.6 ml</td>
</tr>
<tr>
<td>4</td>
<td>26 ml</td>
<td>5.2 ml</td>
<td>20.8 ml</td>
</tr>
<tr>
<td>5</td>
<td>30 ml</td>
<td>6.0 ml</td>
<td>24.0 ml</td>
</tr>
<tr>
<td>6</td>
<td>34 ml</td>
<td>6.8 ml</td>
<td>27.2 ml</td>
</tr>
<tr>
<td>7</td>
<td>38 ml</td>
<td>7.6 ml</td>
<td>30.4 ml</td>
</tr>
<tr>
<td>8</td>
<td>42 ml</td>
<td>8.4 ml</td>
<td>33.6 ml</td>
</tr>
</tbody>
</table>

NOTE: 1) This volume include 4 ml for an additional conditioning step that MUST BE performed after every use of the instrument. 2) The remaining volume after run can be used for up to 2 weeks after preparation and 1 month if stored at +4°C

- Insert Conditioning Solution fluid line into the Conditioning Solution. Turn the tube instead of cap to close the tube. Ensure the fluid line is positioned at the bottom of the conical tube and stand properly in the slot.
- Update the solution levels in the Fragment Analyzer instrument control software. Main Menu>Utilities>Solution Levels.
3. **1x Inlet Buffer (Prepared by Core Facility)**
 - Mix and use Inlet Buffer at Room Temperature only.
 - **2.6 ml of 5x Inlet Buffer and 10.4 ml of MilliQ water** to prepare 13 ml of **1x Inlet Buffer**.
 - Mix by gently inverting the tube.
 - Discard any liquid in row A in the 96-well Deep Well Plate in the Buffer drawer (B). Reuse the plate and added 1ml of 1x Inlet Buffer prior to your run.

4. **0.25X Rinse Buffer**
 - Discard any liquid in the 96 well PCR Plate in the Buffer drawer (M). Reuse the plate and add 100 µl of **0.25X Rinse Buffer** to the indicated current using row.
 - Spin the plate shortly to remove air bubbles.

5. **Sample Plate**
 - Use 96-well PCR plates in approved list in P.1 only for loading sample. Plates not in the list will **DAMAGE THE CAPILLARIES**. Check your plate with administrator before loading samples.
 - Add 22 µl of the **Diluent Marker** to each well to be analyzed.
 - Add 2 µl of Ladder in one of the well that containing 22 µl Diluent Marker.
 - Add 2 µl of samples in other wells that containing 22 µl Diluent Marker. Mix the solution by swirling with the pipette tip while pipetting up/down.
 - You may change the ratio of the sample / ladder to **Diluent Marker** if necessary. Update the dilution factor in the software for proper analysis.
 - Fill any unused wells within the row with 24 µl/well of Blank Solution.
 - Remove the bubbles by spinning the plate shortly.
 - Load the Sample plate in sample drawer 1 or 2 and perform the separation immediately. Otherwise store the plate at +4 °C until use.

Preparation guide for reagents.
Notice for IB and CC preparation

Please prepare the system by filling the IB and CC on your own as below.

1. Please add 1 mL of 1 x Inlet Buffer (IB) to each well of Row A of the Buffer Tray (B). The IB is stored at 4°C in the Hitachi fridge.

2. Please transfer enough 1 x Capillary Conditioning solution (CC) to the conical tube. The CC is at room temperature on the bench. The required volume of CC can be found in the manual.

Preparation guide for 1x IB and 1x CC loading.
Quick guide for DNF474
CPOS Imaging and Flow Cytometry Core

Agilent Fragment Analyzer Automated CE System

Quick guide for DNF930