BD Aria SORP Standard Operation Protocol – Basic Operation

A. Laser

1. Check if the laser needed is turned ON.

* Please turn ON the UV laser if your fluorochrome-conjugated antibodies must be activated by the UV, such as Hoechst Blue, Hoechst Red or BUV395. Otherwise the UV laser is OFF to avoid DNA damage during sorting. Please contact our staff to confirm your UV laser setting.
B. User Login
 1. Login to FACSDiva Software with your username and password. *If you do not have an account, please contact our staff for assistance.*

 ![Log In](image)

 ![CST Mismatch](image)

 2. Click *Use CST Settings* if the window below pops up.
C. Stream Optimization
1. Go to 100 micron window (upper monitor)
2. Adjust the \textit{Freq} (Starting Value 29.2) so the “neck”
of a drop is formed
3. Adjust the \textit{Ampl} (Starting Value 8.0) so the Drop 1 is close to
 120 and Gap is close to 10
4. Turn ON the \textit{Sweet spot}
D. **Accudrop Delay Assay**

1. To import Accudrop Drop Delay template, click **Experiment > New Experiment**. Select Accudrop Drop Delay, then click **OK**

![Image of a computer screen showing the creation of a new experiment]

- OR -

2. To open existing Accudrop Drop Delay experiment, double-click **Accudrop Drop Delay** on the Browser window

![Image of a computer screen showing the browser window with a list of experiments]
3. Expend Specimen_001

4. Click the tube pointer and expend Tube_001

5. Double click Sort Layout_001. Sort Layout window will pop up
6. Go to Sort Layout Window, Select Precision > Initial

7. Go to 100 micron window (lower monitor), set the slider reading as 0 - 26 - 0 - 0

8. Go to Acquisition Dashboard window, Set Flow rate to 1.0

9. Close upper flow cell access door.
10. Load a tube of Accudrop beads (1 mL of PBS + 1 drop of stock) on the sample stage

11. Go to Acquisition Dashboard, Click *Load*

12. Adjust *Flow rate* if needed to obtain threshold rate constantly 1000-1500 events per sec

13. Go to Sort Layout window, click *Sort*
14. Click *Cancel* on the confirm window

15. Go to 100 micron window (lower monitor), Click *Voltage* and *Optical Filter*
16. Adjust *Drop Delay* value (starting value: 25.00) so that the reading on the left reach 100.

17. Go to Sort Layout window, Select Precision > Fine Tune

18. Adjust *Drop Delay* value **bit by bit** so that the reading on the left reach >97.
19. Go to Sort Layout Window, Click Sort again.

20. Click Cancel on the confirm window

21. Go to Acquisition Dashboard, Click Unload

22. Return the Accudrop beads to 4 degree refrigerator
E. Experiment Setup
 1. Setup New Experiment
 1.1 Go to Browser, Click New Experiment icon. A new experiment will be created.

 ![Image of Experiment Creation]

 1.2 Click Cytometer Settings under the newly created Experiment.

 ![Image of Cytometer Settings]

 1.3 Go to Inspector Window, highlight unwanted channels and click Delete.

 ![Image of Channel Highlight and Delete]

1.4 Check H and W boxes of FSC and SSC

1.5 Keep Log boxes of FSC and SSC **unchecked**

1.6 Keep Log boxes of all fluorescence channels **checked**

* If you are doing cell cycle or DNA content analysis, please keep log box of your DNA specific fluorescence channel **unchecked**.

2. Setup Compensation (for Multi-colour panel)
 2.1 Click **Experiment > Compensation Setup > Create Compensation Control**
2.2 If any one of your single stain controls is known to be 100% positive, i.e. no negative population, check the box “Include separate unstained control tube/well”.

2.3 Click OK
2.4 **Expand the Compensation Control Specimen**

2.5 **Click the tube pointer of the first tube**

2.6 **Load the single stain controls on the sample stage according to the tube label, i.e. run FITC single stain when the tube pointer is pointing at “FITC Stained Control”**

2.7 **Go to Acquisition Dashboard, Click **Load**.**

2.8 **Go to Normal Worksheet, move the P1 gate to include major cluster. Adjust FSC and SSC PMT Voltage if needed**
2.9 Go to Cytometer window, fine tune the corresponding fluorescence PMT voltage to have best separation of negative and positive peak.

2.10 Move the interval gate (P2) to include the positive peak.

2.11 Use interval gate to gate out negative peak (P3).

2.12 Go to Acquisition Dashboard, Click **Unload**. *DO NOT Record Data at this point.*

2.13 Repeat step 2.5 – 2.12 with all the single stain controls.
2.14 After optimising the PMT voltage of ALL the fluorescence channel, load each single stained control and click Record Data for ALL single stain controls

2.15 Click Experiment > Compensation Setup > Calculate Compensation

2.16 Click Link and Save for the most stringent practice, i.e. cannot adjust PMT voltage anymore OR Click Apply Only for some flexibility on PMT voltage adjustment of your samples.

2.17 Switch Normal worksheet to Global worksheet
3. Setup Plots and Tables

3.1 Go to Browser, Click *New Specimen icon*

3.2 Expand Specimen_001

3.3 Click the tube pointer of Tube_001
3.4 Go to Global Sheet Window, Click the graph type icon

<table>
<thead>
<tr>
<th>Icon</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dot Plot</td>
</tr>
<tr>
<td></td>
<td>Contour Plot</td>
</tr>
<tr>
<td></td>
<td>Histogram</td>
</tr>
</tbody>
</table>

3.5 Click on the blank area of Global Worksheet window to create a new plot.

3.6 Mouse over the axis label and right click. Select the parameters of interest from the list.

3.7 Repeat step 3.4 – 3.6 until all plots needed is created.

* Essential Plots: FSC-A VS SSC-A; FSC-H VS FSC-W; SSC-H VS SSC-W
3.8 Click on any plot and right click. Click *Show Population Hierarchy*.

3.9 Click on any plot and right click. Click *Create Statistics View*.
3.10 Click on Statistics View table and right click, Click *Edit Statistics View* to select statistics of interest to be shown in the table.

3.11 Click *Statistics* Tab, check the boxes of interested statistics and then click OK.
4. Sample Acquisition
 4.1 Load your sample on the sample stage

4.2 Go to Acquisition Dashboard, Click Load

4.3 When you start seeing dots appear on the plot, Go to Cytometry window and Click Parameters

4.4 Adjust PMT Voltage accordingly

<table>
<thead>
<tr>
<th>Channel</th>
<th>Suggested Voltage range for mammalian cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSC</td>
<td>180-300</td>
</tr>
<tr>
<td></td>
<td>*If you sample cell size is too big to visualise with FSC voltage 180, you may change the FSC ND filter from 1.0 to 1.5</td>
</tr>
<tr>
<td>SSC</td>
<td>230-330</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>300-850</td>
</tr>
</tbody>
</table>
4.5 Adjust *Flow rate* if needed

* If you perform sorting, DO NOT set flow rate > 5.0 or threshold rate > 5000 event/s

5. Create Gates

5.1 Go to Global Sheet Window, Click the type of gate needed

<table>
<thead>
<tr>
<th>Icon</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Polygon Area Gate</td>
</tr>
<tr>
<td></td>
<td>Rectangle Area Gate</td>
</tr>
<tr>
<td></td>
<td>Quandrant Gate</td>
</tr>
<tr>
<td></td>
<td>Interval Gate</td>
</tr>
</tbody>
</table>

5.2 Draw the gate on the plot of interest to gate out target cluster /peak
5.3 If you want to create a new population out of particular parent population, highlight the parent gate on the hierarchy table first and then create the gate.

5.4 Click on target plot and right click, Click *Show Population > Target population* to visualize the target population ONLY in that plot.
6. Data Recording
 6.1 Go to Acquisition Dashboard, set Stopping gate to singlet gate or live cell gate

 ![Image of Acquisition Dashboard showing Stopping Gate set to P2]

 6.2 Set the Storage gate to All Events

 ![Image of Acquisition Dashboard showing Storage Gate set to All Events]

 6.3 Set Events To Record, i.e., events number out of stopping gate to be recorded (suggested number 10,000 – 50,000)

 ![Image of Acquisition Dashboard showing Events To Record set to 10,000]

 6.4 if the sample is Unload or Acquisition is stopped, Click Load or Acquire Data

 6.5 Click Record Data

 6.6 Click Next Tube to create a new sample
F. Sort Device Alignment

1. Tube Holder
 1.1 Assemble the tube holder as picture below

1.2 Put dummy tubes into the position

1.3 Slide the tube holder right under the sort chamber. Plug in water tubing if cooling is needed.

1.4 Click *Select Device* icon on the lower right corner of the upper monitor
1.5 Select collection device of interest

![Collection Device Selection]

1.6 Go to 100 micron window (lower monitor). Adjust the Slider

<table>
<thead>
<tr>
<th>Device</th>
<th>Suggested Slider reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-tube 15 ml</td>
<td>0 – 49 – 41 – 0</td>
</tr>
<tr>
<td>4-tube 1.5ml / 2.0ml</td>
<td>71 – 30 – 25 – 68</td>
</tr>
<tr>
<td>4-tube 5 ml</td>
<td>80 – 30 – 25 – 74</td>
</tr>
</tbody>
</table>

1.7 Click Voltage. Wait 2 seconds and then Click Test Sort.

1.8 Adjust the slider so the side stream dot lines within the target lines
1.9 Click Waste Drawer

1.10 Open the sort chamber door

1.11 Check if the side streams can enter the dummy tubes. Adjust the slider if needed.

1.12 Click Waste Drawer and then Voltage

1.13 Close the sort chamber door

1.14 Slide out the tube holder and Put collection tubes into position
2. ACDU (Culture plate)
 2.1 Slide the ACDU adaptor right under the sort chamber

![ACDU adaptor](image)

2.2 Select the device (ACDU) on the lower right corner of the upper monitor

![Monitor Menu](image)

2.3 Go to 100 micron window (lower monitor). Adjust the Slider

<table>
<thead>
<tr>
<th>Device</th>
<th>Suggested Slider reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well plate</td>
<td>33 – 0 – 0 – 0</td>
</tr>
</tbody>
</table>
2.4 Click **Voltage**. Wait 2 seconds and then Click **Test Sort**

2.5 Adjust the slider so the side stream dot lines within the target lines

2.6 Click **Voltage** again to stop test sort

2.7 Click **Sort > New Sort Layout**
2.8 Click the *Eject* button on the Sort Layout window

2.9 Plug in water tubing if cooling of the ACDU stage is needed

2.10 Load a dummy plate on the ACDU stage with A1 on the outer left corner
2.11 Click Sort > Home Device

![Image of software interface showing Home Device]

2.12 Select plate type and then click Go to Home

![Image of software interface showing plate type selection]

2.13 Go to 100 micron window (lower monitor), Click Voltage and Waste Drawer

![Image of software interface showing voltage and waste drawer settings]
2.14 Double Click Test sort to shot a small drop of sheath on the dummy plate cover.
2.15 Move the stage accordingly in order to shoot the drop of sheath on A1 position

2.16 Go to Home Device Window, Click Set Home and Apply

2.17 Remove Dummy plate from the stage and Load the collection plate
G. Sort Setup
1. Click Sort > New Sort Layout

2. Select appropriate Device:

<table>
<thead>
<tr>
<th>Name</th>
<th>Supported Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 tube</td>
<td>2-way 15 mL, 5.0 mL, 2.0 mL, 1.5mL</td>
</tr>
<tr>
<td>4 tube</td>
<td>4-way 5.0 mL, 2.0 mL, 1.5 mL</td>
</tr>
<tr>
<td>96-well Falcon</td>
<td>96-well culture plate</td>
</tr>
</tbody>
</table>

3. Select appropriate Precision:

<table>
<thead>
<tr>
<th>Name</th>
<th>Suitable Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity</td>
<td>Sorting target population higher than 20%</td>
</tr>
<tr>
<td>Yield</td>
<td>Sorting target population less than 20%</td>
</tr>
<tr>
<td>Single Cell</td>
<td>Single cell sorting into 96-well plate / Single cell sequencing</td>
</tr>
<tr>
<td>4-way Purity</td>
<td>4-way sorting target population higher than 20%</td>
</tr>
</tbody>
</table>
4. Assign target population to position by clicking the position > Add > Target gate

5. Input Target Events (sorting will stop when the sorted cell number reached the target event) for each target population if needed.

Select Continuous for unlimited number.

6. Load your Sample onto the sample stage.

7. Go to Acquisition Dashboard window, click Load

8. Go to Sort layout window, Click Sort
9. Click OK on Confirm window

10. During the sort keep **monitoring** Threshold Rate and Drop 1 value

11. Click *Pause* if you wish to pause the sort and replace new collection tube. Click *Resume* after finish replacement.

12. Click *Sort* to end the sort

13. Click OK to save sort report

14. Go to Acquisition Dashboard window, click *Unload*.
H. Data Export

1. FCS file

1.1 Go to Browser window, Select the Tubes / Specimen of interest.

1.2 Right Click over the selection and click Export > FCS file

1.3 Select FCS 3.0 and keep all parameters Linear. Click OK
1.4 Click Browse to choose the destination (D:/User/Department/Personal Folder)

1.5 Click Save

2. PDF file
 2.1 To export pdf of multiple tubes, Click the tube pointer of any tubes

2.2 Select the wanted tubes/ Specimen.

2.3 Right Click over the selection and click Batch Analysis
2.4 Check the boxes as picture below

2.5 Click Browse to choose the destination (D:/User/Department/Personal Folder)

2.6 Click Start and then OK.
3. Sort Report
 3.1 To export sort report, select Sort Layout and then right click. Click Sort Reports

![Sort Layout Window]

3.2 Select the sort from the list and then click OK

![Select Sort Report Window]
3.3 Click File > Save As PDF

3.4 Choose the destination (D:/User/Department/Personal Folder) and click Save
I. **Cleaning**

1. Go to Browser window, click the tube pointer of any tube

2. Load a tube of 2 mL of cleaning solution No. 1 (FACSClean) on the sample stage

3. Go to Acquisition Dashboard window, set *Flow rate* to 11.0

4. Click *Load*.

5. Acquire the solution for 5 minutes.
6. Click *Unload*.

7. Load a tube of 2 mL of cleaning solution No.2 (FACSRinse) on the sample stage.

8. Repeat step 3-5. If Propidium Iodide (PI) is used, No.2 solution should be washed for 10 mins.

9. Load a tube of 2 mL of cleaning solution No.3 (MilliQ water) on the sample stage.

10. Repeat step 3-5.

J. User Logout

1. **TURN OFF the **Sweet Spot**

2. **Click File > Logout**
3. Open the upper flow cell access door of the system before you leave.